Current chapter is an effort to make a blog application with Javascript based Web Server Node.js with CouchDB.

To make this application, we have selected -

1> swig client side javascript template engine

(Refer to http://paularmstrong.github.io/swig/ for more documentation about this)

2> Node.js for server side development

3> Middleware handling with express.js

4> Database – CouchDb

5> Node.js Cradle Module Extention (to make communication with CouchDB)

As this article is mainly on couchdb, we will discuss couchdb related functionalities in detail. We will discuss about the blog application functionalities also.

Please refer to the blog.zip for source code of the application.

Node.js is a javascript runtime. Unlike traditional web servers, there is no separation between the web server and code and we do not have to customize configuration files (XML or Property Files) to get the Node.js Web Server up. With Node we can create the web server with minimal code and deliver content with the code. We will write here, how to create web server with Node and work with static and dynamic file content, with some performance tuning in the Node.js Web server.

We have used Node.js server for the web controller and routing of contents, persisted and fetched data through CouchDB - a package for couchdb handling (cradle) through NPM (Node Package Manager Registry) and done front end rendering with Swig (JavaScript Template Engine) also with node package manager consolidate module (swig comes with this).

Below is the architechture -

[image: image1.png]Web Ul Layer

Ul made with swig Javascript
Template Engine

e

App.Js Controller
Communication

Swig Template and
View

with Model

Node s Server

Server Code Execution

Server Code Execution

\

Expressjs

mmun|

Transmit Data
10 senvices
‘Through Cradle

As there is "package.json" in the blog application directory, all the node.js library dependencies are there. To run all the required libraries,

we need to run "npm install" from terminal.

We need to start the application using node app.js
The App.js functionality -

==========================

var express = require('express')
 , app = express() // Web framework to handle routing requests
 , cons = require('consolidate') // Templating library adapter for Express
 , routes = require('./routes'); // Routes for our application

var cradle = require('cradle'); // Driver for node.js Couchdb Driver

The above code is for initialisation of the libraries.

Below are the database credentials.One point to note - before running the below code, the database must be present (i.e. to be created in couchdb). We can easily accomplish this with futon (couchdb administrative console)

var databaseUrl = "blogdb";

var connection = new(cradle.Connection)('http://piyas:secure2013@localhost', 5984, {
 auth: { username: 'piyas', password: 'secure2013' }
 });

var db = connection.database(databaseUrl);

Below is the code for registering swig templating engine in node.js express middleware.

app.engine('html', cons.swig);

app.set('view engine', 'html');

app.set('views', __dirname + '/views');

Some notes about Express.js module and use of them in app.js

==

Express.js is a powerful web development framework for the Node.js (Node) platform.

Express.js comes with Node.js middleware modules. These components are JavaScript components which can be used in Express.js based web applications to make the application moduler and layered.

With express.js, except the express.js apis, other node.js core apis also can be called. So there is no framework binding in express.js use for an application. Express.js framework can be used to develop any kind of web application - simple to complex. We can develop any kind of web application with Express.js with asynchronous behavious of application in mind.

Express.js Objects -

===============

The application object -

==================

The application object is an instance of Express, generally presented by the variable named 'app'. This is the main object of our Express applocation and all of the functionality are built on and with it within any node.js web application which are built with express.js framework.

Creating an instance of the Express.js module within node application:

var express = require('express');
The request object -

===============

Now, when a web client makes a request to the Express application, the HTTP request object is created. At all the callbacks in the application where the request objects are passed as reference, are represented with a conventional variable 'req'. This request object holds all the HTTP stack related variable such as header informations, HTTP methods and related properties for a particular request from the web client.

Some Methods of Request Object which are important in web application development -

A> req.params - Holds the values of all the parameters of the request object

B> req.params(name) - Returns value of specifica parameter from Web URL GET params or POST params

C> req.query - Takes values of GET method submission

D> req.body - Takes values of POST form submission

E> req.get(header) - Gets the request HTTP header

F> req.path - The request path

G> req.url - The request path with query parameters

The response object

===============

The response object is created along with request object, and is generally represented by a variable named 'res'. In HHTP Request-Response model all the express middlewares works on the request and the response object while passing the control one after another.

Some Methods of Response Object which are important in web application development -

A> res.status(code) - The HTTP response code

B> res.attachment([filename]) - The response HTTP header Content-Disposition to attachment

C> res.sendfile(path, [options], Sends a file to the client [callback])

D> res.download(path, [filename], Prompts the client to download from [callback])

E> res.render(view, [locals], Renders a view callback)

Concepts used in Express

========================

Asynchronous JavaScript

=======================

Node.js programming is mainly done with Asynchronous Javascript Programming. All of the modules in node.js are built with asynchronous nature. So the execution of code from one layer to another generally goes within callback functions. Node and Express are built on the concept of async operations, and all the results are handled in callback functions. As node.js program executes in an event loop, end user generally does not face any resume from the view layer i.e web browser or mobile browser etc.Generally the callback function is passed to async function to be executed and this returns the result to upper function, when the execution of code is completed within the callback function.

All the programs within express.js and associated programs are installed in node.js environment as node modules.For any node.js application the deplyment configurations are written in package.json file. If we need to install the application as node module in the node.js environment i.e. through npm install command, we should include the package.json file.

Middlewares in node.js applications

===================================

A middleware in node.js application context is a JavaScript function to handle HTTP requests to an Express.js application. It will be able to handle the request and the response objects from HTTP request, perform some operation on the request, send response to the client and will be able to pass the objects/results to the next middleware.

Middlewares are loaded in an Express application with app.use() method. Some basic example of a middleware can be for a GET method of a request object is as -

 app.use(express.cookieParser());
 app.use(express.bodyParser());

The majority of Express.js functionality is implemented with its built-in middlewares. One of Express.js middleware is the router middleware,

which is responsible for routing the HTTP requests to Express applications to the appropriate data handler functions. From user perspective, it is the navigational functionality in a web application.

The destinations of the HTTP request URIs are defined via routes in the application. Routes are the controlling points for response from a request,i.e they decide where to go for a specific request by analysing data in the request object. In traditional web application like J2ee Application, this functionality is handled by the Controller in the application.Route handlers may be defined in the app.js file or loaded as a Node module.

Now the routes function -

// Application routes

routes(app, db);

This code goes to index.js file in the routes folder by default.

We can see the code in index.js -

app.get('/newpost', contentHandler.displayNewPostPage);

So whenever the application gets a request with '/newpost', it will goto the displayNewPostPage function of the contentHandler function i.e. in the content.js file.

Now if we can go to displayNewPostPage function, we can see -

this.displayNewPostPage = function(req, res, next) {
 "use strict";

 if (!req.username) return res.redirect("/login");

 return res.render('newpost_template', {
 subject: "",
 body: "",
 errors: "",
 tags: "",
 username: req.username
 });
 }

Here if the 'username' variable is not present in request object, the application will redirect user to 'login' action.

Otherwise, the response object will render the template 'newpost_template', which will show the html file 'newpost_template.html' in 'views' folder.

Allmost all the web flow goes in this way in this application. All the web flows are documented within 'index.js' of 'routes' folder.
Now the application will listen in port by the code -

app.listen(8082);

Works in index.js

===================

Generally the index.js contains all the functionalities of controller in generic way -

Example -

app.post('/newpost', contentHandler.handleNewPost);

Here the function in content.js -

 this.handleNewPost = function(req, res, next) {
 "use strict";

 var title = req.body.subject
 var post = req.body.body
 var tags = req.body.tags

 if (!req.username) return res.redirect("/signup");

 if (!title || !post) {
 var errors = "Post must contain a title and blog entry";
 return res.render("newpost_template", {subject:title, username:req.username, body:post, tags:tags, errors:errors});
 }

 var tags_array = extract_tags(tags)

 var escaped_post = sanitize(post).escape();

 var formatted_post = escaped_post.replace(/\r?\n/g,'
');

 posts.insertEntry(title, formatted_post, tags_array, req.username, function(err, permalink) {
 "use strict";

 if (err) return next(err);

 //redirect to the blog permalink
 return res.redirect("/post/" + permalink)
 });
 }

Here the values of the request object are taken in the function through 'req' object.

All the required validations are done.

Then the 'insertEntry' function of posts.js will be called to save the data. This function will be described later.

All the functions related to couchdb database handling are explained below.

Now the most important part - (CouchDB Handling)

==

To face data from couchdb, we can access those data from couchdb key,value store through view creation.

Please refer to our previous douments for view creation and map function creation in couchdb.

Before working on the application we have to create the following views -

1> To access user data through user name, we have to create the follwing design document in the 'blogdb' database -

db.save('_design/user', {
 views: {
 byUsername: {
 map: 'function (doc) { if (doc.type === "user") { emit(doc.username, doc) } }'
 }
 }
 });

It wll create the map function with key as username and value as doucment.

2> To access user data specific to one session, we have to create the follwing design document in the 'blogdb' database -

db.save('_design/session', {
 views: {
 bySessionid: {
 map: 'function (doc) { if (doc.type === "session") { emit(doc._id, doc) } }'
 }
 }
 });

It wll create the map function with key as session and value as doucment.

3> To access posts in the couchdb database, we have to create the follwing design document in the 'blogdb' database -

db.save('_design/post', {
 views: {
 byPosts: {
 map: 'function (doc) { if (doc.type === "post") { emit(doc._id, doc) } }'
 },
 byTags: {
 map: 'function (doc) { if (doc.type === "post") { emit(doc.tags, doc) } }'
 },

 byPermalinks: {
 map: 'function (doc) { if (doc.type === "post") { emit(doc.permalink, doc) } }'
 }

 }
 });

Here

A> 'byPosts' function will create '_id' as the key and whole document as value.

B> 'byTags' function will create 'tags' as the key and whole document as value.

C> 'byPermalinks' function will create 'tags' as the key and whole document as value.

Now the descriptions of main functions for couchdb handling through cradle -

Reference - posts.js

====================

1> function PostsDAO(db) - The reference of the Database is done through this constructor (db).

2> Insert the post functionality -

Function name - insertEntry

Creation of the Document (Simple json Document) -

 var post = {"title": title,
 "author": author,
 "body": body,
 "permalink":permalink,
 "tags": tags,
 "comments": [],

"type":"post",
 "date": new Date()}

Handling save of the document through cradle -

 // insert the post

db.save('POSTID_'+Math.random(), post, function (err, res) {

 if (err) {

 // Handle error

 res += ' SAVE ERROR: Could not save record!!\n';

 callback(err, null);

 } else {

 // Handle success

 res += ' SUCESSFUL SAVE\n';

 callback(err, permalink);

 }

 });
The first argument to the 'save' function expects a unique id field.

Second argument is the 'post' variable.

Third argument is the handle of a function to response.

This will return the callback to the event or functionality with or without error.

3> Get all the posts -

Function name - getPosts

Handling of get all the documents -

db.view('post/byPosts', { }, function (err, doc) {

console.dir(doc);
 "use strict";

 if (err) return callback(err, null);

 console.log("Found " + doc.length + " posts");

 callback(null, doc);

});

The first argument is the design document name.

The second argument is the combination of key and value by which the document will be accessed.

If it is empty json, then it will return all the documents.

Third argument is the handle of a function with returned document/documents.

3> Get all Documents by tags array -

Function name - getPostsByTag

Handling of get all the documents by tags -

db.view('post/byTags', { key : tagArray }, function (err, doc) {
 console.dir(doc);
 "use strict";

 if (err) return callback(err, null);

 console.log("Found " + doc.length + " posts");

 callback(null, doc);

});

The first argument is the design document name.

The second argument is the combination of key and value by which the document will be accessed.

Third argument is the handle of a function with returned document/documents.

4> Get all Documents by permalinks -

Function name - getPostByPermalink

Handling of getting post by permalink -

db.view('post/byPermalinks', { key : permalink }, function (err, doc) {

 console.dir("in permalink --" + doc);
 "use strict";

 if (err) return callback(err, null);

 console.log("Found " + doc.length + " posts");

 callback(null, doc);

});
The first argument is the design document name.

The second argument is the combination of key and value by which the document will be accessed.

Third argument is the handle of a function with returned document.

Reference - sessions.js

=======================

1> function SessionsDAO(db) - The reference of the Database is done through this constructor (db).

2> save the doucment for Session -

Function name - startSession

Hnadling of saving the document -

Creating a session id -

var session_id = crypto.createHash('sha1').update(current_date + random).digest('hex');

Creating as= session document -

var session = {'username': username, '_id': session_id,'type':'session'}

saving a document -

db.save(session_id, session, function (err, res) {

console.log(err);

 if (err) {

 // Handle error

 res += ' SAVE ERROR: Could not save record!!\n';

 } else {

 // Handle success

 res += ' SUCESSFUL SAVE\n';

 }

 console.log('session start.2'+res);

 callback(err, session_id);

 });
3> get username for a session -

Function name - getUsername

db.view('session/bySessionid', { key: session_id }, function (err, doc) {

console.dir(doc);
 "use strict";

 if (err) return callback(err, null);

 if (!doc) {
 callback(new Error("Session: " + doc + " does not exist"), null);
 return;
 }

 callback(null, doc[0].value.username);

});

The first argument is the design document name.

The second argument is the combination of key and value by which the document will be accessed.

Third argument is the handle of a function with returned document.

Reference - users.js

====================

1> Adding a user -

Function name - addUser

Creating a user document -

var user = {'email': email, 'password': password_hash, 'username': username,'type':'user'};
Saving document in couchdb -

db.save('ID_'+Math.random(), user, function (err, res) {

 if (err) {

 // Handle error

 res += ' SAVE ERROR: Could not save record!!\n';

 } else {

 // Handle success

 res += ' SUCESSFUL SAVE\n';

 }

 return callback(err, null);

 });

2> validate an user -

Function name - validateLogin

db.view('user/byUsername', { key: username }, function (err, doc) {

 if (err) return callback(err, null);
 if (doc) {

 if (bcrypt.compareSync(password, doc[0].value.password)) {

 console.log('here we are');

 callback(null, doc);
 }
 else {
 var invalid_password_error = new Error("Invalid password");
 // Set an extra field for any error which is not a db error
 invalid_password_error.invalid_password = true;
 callback(invalid_password_error, null);
 }
 }
 else {
 var no_such_user_error = new Error("User: " + user + " does not exist");
 no_such_user_error.no_such_user = true;
 callback(no_such_user_error, null);
 }

});

The first argument is the design document name.

The second argument is the combination of key and value by which the document will be accessed.

Third argument is the handle of a function with returned document.

So in the above article, we have described about -

1> Running an application in Node.js web server

2> A minimal routing for data handling

3> Handling data from GET request

4> Handling data from POST request

5> Handling couchdb functions through cradle

6> View creation and data access in couchdb

There are rooms for improvement of node.js code like blog comment adding, several business logic as duplicate post handling, adding category for the blog etc. - but those enhancements should be tried by reader as their work exercise.

